Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Life (Basel) ; 12(7)2022 Jul 19.
Article in English | MEDLINE | ID: covidwho-1938890

ABSTRACT

The COVID-19 era has prompted several researchers to search for a linkage between COVID-19 and its associated neurological manifestation. Toll-like receptor 4 (TLR-4) acts as one such connecting link. spike protein of SARS-CoV-2 can bind either to ACE-2 receptors or to TLR-4 receptors, leading to aggregation of α-synuclein and neurodegeneration via the activation of various cascades in neurons. Recently, dithymoquinone has been reported as a potent multi-targeting candidate against SARS-CoV-2. Thus, in the present study, dithymoquinone and its six analogues were explored to target 3CLpro (main protease of SARS-CoV-2), TLR4 and PREP (Prolyl Oligopeptidases) by using the molecular docking and dynamics approach. Dithymoquinone (DTQ) analogues were designed in order to investigate the effect of different chemical groups on its bioactivity. It is noteworthy to mention that attention was given to the feasibility of synthesizing these analogues by a simple photo-dimerisation reaction. The DTQ analogue containing the 4-fluoroaniline moiety [Compound (4)] was selected for further analysis by molecular dynamics after screening via docking-interaction analyses. A YASARA structure tool built on the AMBER14 force field was used to analyze the 100 ns trajectory by taking 400 snapshots after every 250 ps. Moreover, RMSD, RoG, potential energy plots were successfully obtained for each interaction. Molecular docking results indicated strong interaction of compound (4) with 3CLpro, TLR4 and PREP with a binding energy of -8.5 kcal/mol, -10.8 kcal/mol and -9.5 kcal/mol, respectively, which is better than other DTQ-analogues and control compounds. In addition, compound (4) did not violate Lipinski's rule and showed no toxicity. Moreover, molecular dynamic analyses revealed that the complex of compound (4) with target proteins was stable during the 100 ns trajectory. Overall, the results predicted that compound (4) could be developed into a potent anti-COVID agent with the ability to mitigate neurological manifestations associated with COVID-19.

2.
Bioorg Chem ; 120: 105587, 2022 03.
Article in English | MEDLINE | ID: covidwho-1620506

ABSTRACT

Inflammation, oxidation, and compromised immunity all increase the dangers of COVID-19, whereas many pharmaceutical protocols may lead to increased immunity such as ingesting from sources containing vitamin E and zinc. A global search for natural remedies to fight COVID-19 has emerged, to assist in the treatment of this infamous coronavirus. Nigella satvia is a world-renowned plant, an esteemed herbal remedy, which can be used as a liquid medicine to increase immunity while decreasing the dangers of acute respiratory distress syndrome. Thymoqinone (TQ), dithymoqinone (DTQ) and thymohydroquinone (THQ), are major compounds of the essential oil contained in N.sativa. A current study aims to discover the antiviral activity of two compounds, Thymohydroquinone and Dithymoquinone, which are synthesized through simple chemical procedures, deriving from thymoquinone, which happens to be a major compound of Nigella sativa. A half-maximal cytotoxic concentration, "CC50", was calculated by MTT assay for each individual drug, The sample showed anti-SARS-CoV-2 activity at non-cytotoxic nanomolar concentrations in vitro with a low selectivity index (CC50/IC50 = 31.74/23.15 = 1.4), whereby Dimthymoquinone shows high cytotoxicity.


Subject(s)
Biological Products , COVID-19 Drug Treatment , Nigella sativa , Severe acute respiratory syndrome-related coronavirus , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Benzoquinones/pharmacology , Nigella sativa/chemistry , Plant Extracts/therapeutic use , Thymol/analogs & derivatives
3.
J Biomol Struct Dyn ; 39(12): 4225-4233, 2021 08.
Article in English | MEDLINE | ID: covidwho-1317833

ABSTRACT

Nigella sativa or black seed is used as a medicinal plant around the globe. Oil and seeds have a long tradition of folklore use in various medicinal and food systems. The conventional therapeutic use of Nigella sativa, in different ways, has been reported in several studies to treat different diseases including influenza, headache, hypertension, diabetes, inflammation, eczema, fever, cough, asthma, bronchitis, and fever. Based on previously reported potential therapeutic uses of N. sativa compounds, and keeping in mind the dire need of time for the development of potent antiviral, a combined docking, ADMET properties calculation, molecular dynamics, and MM-PBSA approaches were applied in the current study to check the therapeutic potentials of N. sativa chief constituents against COVID-19. Among the studied compounds, we found that dithymoquinone (DTQ), with binding affinity of -8.6 kcal/mol compared to a positive control (chloroquine, -7.2 kcal/mol) , has the high potential of binding at SARS-CoV-2:ACE2 interface and thus could be predicted as a plausible inhibitor to disrupt viral-host interactions. Molecular dynamics simulation of 100 ns well complemented binding affinity of the compound and revealed strong stability of DTQ at the docked site. Additionally, MM-PBSA also affirms the docking results. Compound DTQ of the present study, if validated in wet lab experiments, could be used to treat COVID-19 and could serve as a lead in the future for development of more effective natural antivirals against COVID-19. Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 Drug Treatment , Nigella sativa , Adipates , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , SARS-CoV-2 , Succinates
SELECTION OF CITATIONS
SEARCH DETAIL